1. Solve $f(x) = \sqrt{x+8} = 1$ for x.

2. Given $g(x) = 4x^2 - x$, what is g(1-x)?

3. The data points for the following table are graphed in the figure below.

For the graph that is a function, approximate f(1.5).

4. Suppose that
$$f(x)$$
 is linear and that $f(2) = 6$ and $f(3) = 5$. If $f(x) = b + mx$, then $b = 8$ and $m = 1$. (2,6) (3,5) $6 = -1(2) + b$ $6 = -2 + b$ $8 = b$

- 5. Assume that height is a function of age and that H = f(a) is the average height (in inches) for females in the US at age a years. What is the practical interpretation of f(z) + 5?
 - A) z plus the number of US females who are 5 inches tall.
 - B) 5 plus the number of US females who are z inches tall.
 - C) 5 years older than the average US female who is z inches tall.
 - (D) 5 inches taller than the average height of a z year old US female.
- 6. Find the y-coordinate of the point on the graph of $y = h(x) = \frac{1}{\sqrt{x+6}}$ whose x-coordinate is -2.
- 7. Let w(m) give the weight (in pounds) of an average-sized baby girl who is m months old. What does it mean if w(9) = 18?
 - A) 18 baby girls weight 9 pounds.
 - B) 9 baby girls weight 18 pounds.
 - C) An average 18-month old girl weighs 9 pounds.
 - D) An average 9-month old girl weighs 18 pounds.
- 8. What is the domain of the function $f(x) = \frac{5}{\sqrt{4-x^2}}$?

 A) -5 < x < 5B) 5 < x < 5
- 9. Does the graph of $y = -4x^2 x$ appear to be concave up, concave down, or neither?

10. Assuming the entire graph of f(x) is shown, what is the domain of f(x)?

- A) $4 \le x \le 12$
- (B) $4 \le x \le 20$
- C) $4 \le y \le 12$
- D) $4 \le y \le 20$
- 11. A model rocket is launched from the roof of a building. For height h, in meters, and time t, in seconds, after the rocket is launched, the height of the rocket above the ground is given

by $h = f(t) = -4.9t^2 + 47t + 18$. Interpret the domain of the graph of f(t).

- A) The rocket's initial height
- B) The time it takes for the rocket to hit the ground
- C) The heights the rocket reaches
- D) The time the rocket is in the air
- E) The maximum height obtained by the rocket.
- 12. Find the domain and range of the function $f(x) = \frac{-6}{\sqrt{x-8}}$ x > 8 Domain: All reals x > 8 Range: All reals y < 0 Negative

13. Let f and g be two invertible functions such that $f^{-1}(x) = (x-3)^3$ and g(x) = 5x + 2.

$$4 = 5x + 2$$
 $2 = 5x$
 $2 = 5x$
 $3 = 5x - 3$
 $3 = 5x - 3$

14. Does the following figure show an accurate graph of $f(x) = \begin{cases} 1, & -2 \le x < 0 \\ x^2, & 0 \le x < 2 \end{cases}$ $x, & 2 \le x \le 4$

15. Calculate the average rate of change of the function
$$f(x) = 8x - 3x^2 + 14$$
 between $x = 1$ and $x = 4$.

$$f(i) = 8(i) - 3(i)^2 + 14$$

$$= 8 - 3 \cdot 1 + 14$$

$$= 8 - 3 \cdot 14$$

$$= 8 - 3 \cdot 14$$

$$= 32 - 48 + 14$$

$$= 32 - 48 + 14$$

$$= -16 + 14$$

$$= -16 + 14$$

16. Let f and g be two invertible functions such that $f^{-1}(x) = \frac{2}{x+5}$ and g(x) = 2(x-2).

Find
$$f(g^{-1}(5))$$
. Round your answer to two decimal places, if necessary.

$$S = 2(x-2) \quad 4.5 = \frac{Z}{x+5} \qquad 9(x) = 2(x-2) \quad f^{-1}(x) = \frac{Z}{x+5} \qquad f(4.5) = \frac{2}{4.5} - 5 \\
S = 2x-4 \qquad 4.5(x+5) = 2 \qquad x = 2(y-2) \qquad x = \frac{2}{y+5} \qquad = \frac{4}{9}-5 \\
9 = 2x \qquad 4.5(x+5) = 2 \qquad x = 2y-4 \qquad x = 2y-4 \qquad x = 2y-4 \\
4.5 = x \qquad 4.5 = -20.5 \qquad x = 2y-4 \qquad x = 2y-4 \qquad x = 2y-5 \\
4.5 = x \qquad 4.5 = -20.5 \qquad x = 2y-4 \qquad x = 2y-4 \qquad x = 2y-5 \\
y = x = 2y-4 \qquad y = 2y-5 \qquad y = 2y-5 \qquad y = 2y-5 \\
y = x = 2y-4 \qquad y = 2y-5 \qquad y = 2y-5 \qquad y = 2y-5 \qquad y = 2y-5 \\
y = x = 2y-5 \qquad y = 2y-5 \qquad y$$

17. A T-shirt printing company charges a set-up fee of \$10 for each order, plus the cost per shirt shown in the table.

# of shirts	cost per shirt
0-10	\$10
11-20	\$9
21-30	\$8
over 30	\$7

Let C be the total cost in dollars for printing n shirts. Which of the following is the formula for C?

- 18. Fred's cell phone company charges \$50 per month and \$0.25 for each minute (or part of a minute) over 100 minutes. Which of the following is the domain of the function?
 - (A) $x \ge 0$
 - B) $x \ge 50$
 - C) $x \ge 100$
 - D) $0 \le x \le 100$

19. Let
$$f(x) = \begin{cases} 3-2x, & -3 \le x \le -1 \\ x+4, & -1 < x \le 3 \end{cases}$$
. Evaluate:
11, $3 < x \le 5$
a) $f(-1) = 5$ $3-2(-1)$
b) $f(2) = 6$ $3+2$ 6

a)
$$f(-1) = 5$$
 3-2(-1) 2+4

b)
$$f(2) = 6$$
 3+2

c)
$$f(5) = 11$$

20. Use the following table to evaluate $f^{-1}(3)$. = 2

21. Calculate successive rates of change for the function f(x) shown in the following table to determine if the graph is more likely concave up or concave down for $0.1 \le x \le 0.4$.

$$f(x)$$
 0.1 0.2 0.3 0.4

 $f(x)$ -2.7 -3.1 -3.7 -4.5

-.4 -.6 -.8 Decreasing Function

Decreasing More Rapidly

- A) concave up
- (B) concave down
- C) neither
- 22. The circumference, in cm, of a circle whose radius is r cm is given by $C = 2\pi r$. If C = f(r), evaluate and interpret $f^{-1}(14\pi)$.
 - A) $28\pi^2$, the circumference of a circle with radius 14π .

A)
$$28\pi^2$$
, the circumference of a circle with radius 14π .
B) $28\pi^2$, the radius of a circle with circumference 14π .
C) 7, the circumference of a circle with radius 14π .

D) 7, the radius of a circle with circumference 14π .